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Abstract. We consider the two-dimensional classical jellium in a circular domain. Using 
a careful extrapolation method of the exact results for systems with a small number of 
particles ( N  = 1, 2, 3 ,4) ,  we obtain an estimate of the free-energy density and the kinetic 
pressure in the thermodynamic limit for some discrete values of the plasma parameter 
2 s y s 14. An ansatz for the free-energy density is then constructed which is in good 
agreement with the theoretical estimation and the numerical results of a recent Monte 
Carlo simulation of the system. A similar agreement is obtained for the kinetic or virial 
pressure. 

1. Introduction 

The two-dimensional jellium (two-dimensional one-component plasma) has received 
much attention lately. In a theoretical context, the motivation to investigate the 
properties of such a system is related to one of the fundamental questions in statistical 
mechanics of charged particles, namely if classical statistical mechanics may describe 
a crystalline state (or more generally an ordered state) in a model with long-range 
Coulomb forces at sufficiently low temperatures. In a similar two-dimensional model, 
recent computer experiments indicate the existence of a solid phase characterised by 
a directional long-range order and an approximate long-range posit‘ional order in the 
practical case of a finite system ( G a m  et a1 1979); moreover, the three-dimensional 
jellium is ‘realised’ and investigated experimentally (Malmberg and O’Neil 1977, 
Prasad and O’Neil 1979). 

The classical model consists of N charged particles (electrons of charge -e )  
immersed in a uniform neutralising background of positive charge density +pe = 
eN/l~ll, in a domain A.  The microscopic interaction between two point charges is the 
long-range genuine two-dimensional Coulomb potential given by q (1x1) = -ez  lnlxl 
where 1x1 is the distance between the two interacting charges. The thermodynamic 
state of this system is characterised essentially by the two-dimensional plasma para- 
meter y = B e 2  @ = l / kT) ,  and the free-energy density in the thermodynamic limit 
A f R 2  for A of reasonable shape exists (Sari and Merlini 1976); moreover, the ground 
state consists of a configuration in which the electrons form a triangular lattice (Sari 
et a1 1976). Recently it has been shown that in such a system shape-dependent 
properties exist (Choquard 1978); for example, if one computes the particle density 
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at the wall (boundary of A) then, as A becomes large, this approaches a value smaller 
than the mean density p,  called the kinetic or virial pressure p v ;  p v  # P t h  where p t h  is 
the thermal pressure, known to become negative at moderately high values of the 
plasma parameter. The model has also been treated recently in various truncation 
schemes of the BBGKY equilibrium hierarchy and the solution reveals a very simple 
form of the free-energy density and correlation energy as a function of y (Calinon et 
a1 1979, Bakshi et a1 1979, 1981), which is in good agreement with the numerical 
result of a Monte Carlo simulation of the system (Calinon and Choquard 1979, see 
also Choquard et a1 1980b). A non-analytic behaviour of the thermodynamics has, 
at the present time, not been discovered. Since the free energy is shape and boundary 
independent (Albeverio et a1 1982), to investigate the thermodynamics it is sufficient 
to treat the model in an open circular domain A of radius R = (N/T~)”’. 

In this work we present some preliminary analytical results on the thermodynamic 
and kinetic pressure up to moderately high values of the plasma parameter y .  We 
first define the model and recall some known results concerning the exact thermo- 
dynamics, particle density, and pair correlation function for the special value y = 2 
and then check an important sum rule. We then compute the partition function of 
the model with a small number of particles in terms of small polynomials up to y = 12 
(9 2), and we obtain new rigorous upper and lower bounds of the free energy in the 
thermodynamic limit (9 3). Finally a careful analysis of the way in which the thermo- 
dynamic limit is approached at y = 2 together with the exact computations for N = 1, 
2, 3, 4 allow us to obtain an estimate of the free energy at y 2 2  up to y = 14 which 
is in good agreement with a theoretical ansatz (94) and the result of a computer 
experiment of the system; a similar treatment allows an estimate for the kinetic 
pressure in good agreement with the results of a Monte Carlo simulation of the system 
(9 5 ) .  We then briefly give our conclusions (9 6 ) .  

2. Definition of the model and some exact computations 

The model we consider (two-dimensional one-component plasma = 2~ OCP) is made 
up of N point charges of charge -e immersed in a homogeneous neutralising charge 
background of charge density +pe, in a domain A of volume lAl= r R 2  (we restrict 
here to circular domains of radius R and we assume charge neutrality: p =N/lAl). 
The microscopic interaction between two point charges is the two-dimensional long- 
range Coulomb potential given by y(x1,  x2) = -e2 ln(lxl -x21). The Hamiltonian then 
reads (Sari et a1 1976) 

H=Hpp+Hpb+Hbb=$e2Tp 
N N 

xt  -e2 1 ln(/xi-xil)+e2($N21nR -3&2) 
i = l  i < j  

i = l  

where p, b stand for particles and background respectively and {xi} are the positions 
of the N point charges. 

2.1. Partition function 

By definition we have 
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where d{x} = IILl d2xi. With the change of variables: r p x f  = z f ,  we obtain - 
lAIN eyNB N N  

Q , ( N ) = - - e x p [ y ( ~ ) N ( N - 1 ) - b V 2 1 n N ) ] ~  N! N N  
0 1 = 1  n dz?  

N 

x exp( -iy i = l  c z;)a ( { IZ~  11) 

where y = @ e 2  is the two-dimensional plasma parameter, @ = l / k T  and - B  = -(a In r p  +;) is the H-stability bound (Sari and Merlini 1976); 

is a homogeneous polynomial of degree ;yN(N-l), symmetric in the zi obtained 
after integration over the angles {vi}. The free energy per particle is given by 

- P f ,  = (1/N) In Q,(N) = - f , / e 2 .  

For futher use, it is useful to consider the excess free energy with respect to the 
H-stability bound -B and the perfect gas limit, i.e. 

= y [ ~ N l n N - ~ ( N - l ) ] + l - - l n l  1 " n dz? exp(-fy f 2;)- N o i = l  i = l  N !  

and 

As N +00,  7, =f,. The reason for considering f, and 7, will become clear later 
on in $4, where we carry out our analytical computations for very small N. Some 
exact computations can be done for the special value y = 2 by using an identity first 
considered by Mehta (1967) and used recently to obtain new interesting results at the 
same value of y (Deutsch et a1 1979, Alastuey and Jancovici 1981, Jancovici 
1981a, b), i.e. 

Notice that for the thermodynamic limit of the free energy, it is justified to extend 
the upper limit of integration in (3) from N to 00 (Alastuey and Jancovici 1981). Thus: 

xexp( -? ~zi~2)~zi12(i-~~. ( 5 )  

The last term yields exactly the Vandermonde determinant, which for large N is given 
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(Schwarz 1965) by 

In VN =iN2 In N-$N2 +$N In 25r -A In N, 

f,=* =:-$In 27-r = 0.831 059 4. 
so that 

The above known exact value will be used later on, in the construction of new upper 
and lower bounds for the free energy for y # 2 and for an analytical ansatz for f ,  as 
a function of y. 

2.2. One-body correlation function 

From the definition 

and since f l (x l )  is rotational invariant we have 

For y = 2  

For zz<< N, the upper limit of integration in the denominator can be extended to CO 

as for the computation of the free energy so that (Mehta 1967) 

Thus, for y = 2 the state is homogeneous. 
It should be remarked that the situation is different if one computes the density 

f l (z )  for z 2  = N, i.e. at the boundary of A, as N + CO. 

The computation is of interest since the density at the wall, normalised to p, is the 
kinetic or virial pressure (Calinon and Choquard 1979, Choquard et a1 1980a, b, 
Calinon and Merlini 1980). We obtain 

e-" N-1 

P , = z  i = l  J c d z 2  exp(-z2)z2" 

Recalling that the thermal pressure (Hauge and Hemmer 1971) is rigorously given 
by (Sari and Merlini 1976) 

(12) Ppth = -p ' ( a / a P  ) ( - f y / p  = p (1  - b) 
we see that i f  the limit of integration in (1 1) is extended up to 00, then 

From the above 4 d (/3pv/p)v=~ S 1. A linear extrapolation of fl(N) for y = 2 as function 
of x = 1/N, up to N = 10 (see § 51, gives the estimate ( p p v / p ) , = 2  ~ 0 . 6 8 4  which is 
about 30% greater than the thermal pressure. 
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2.3. Two-body correlation function 

It is defined by 

N !  I d 3 . .  . dN e-OH 
fz(x1, xz) = - ( N  -2)! dl dZ . . . dN e-OH 

For y = 2 it is known (Mehta 1967), that the net correlation function g, i.e.fz - p z  = gpz, 
is Gaussian-like, i.e. 

(15) g(Ix1 - x d  = -exp[-w(xl -xZ)’I. 

The correlation energy is given by (Jancovici 1981a, b) 

( l / / 3 )EC(y=2)=tJ  dzrpg(r ) lnr  = ( H ) / N = - B + i - $ c  (16) 

where c = 0.577216 is the Euler constant. Thus 

E v = 2 = ( H ) / N + B  =f-bc  =0.230696. (17) 

Again, the above exact value will be useful in constructing an analytical expression 
or ‘ansatz’ for f ,  as function of y. We now check that the compressibility sum rule is 
satisfied at y = 2. 

If we denote by E (5,0), the static long-wavelength dielectric response function in 
the reduced variable 5 = IKI/KD, K D  = (27~yp)”’, the sum rule (Golden and Merlini 
1977) states that 

with the help of equation (12). 

the linear fluctuation dissipation theorem 
Let S ( K )  = g(K)  + 1 be the Fourier transform of the structure factor. By applying 

s(5)=62(1-1/&(510)) (19) 

to (18) we obtain 

Since g(K)  = g(6) = exp(-& at y = 2 from (20) we obtain 

which proves that the rule is satisfied at y = 2. It has been shown recently that the 
above rule is satisfied for each value of the plasma parameter in the convolution 
approximation (Bakshi et a1 1981). 

It should be remarked that exact computations for y # 2 as far as we know are at 
the present time still lacking: in fact the identity given by (4) holds only for y = 2 and 
for y # 2 integration over the angles {pi} yields more complicated polynomials in the 
ti. Our analytical results for small N follow from the computations of the a ({zi}) for 
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N = 2 and y = 2 , 4 , 6 , .  . . , 1 2  given below: 

a(z1,z2) 

y = 2  z :  + z :  

y = 4  z :  + z t  +4z:z: 

y = 6  2 :  + Z ;  +9Z:Z: +9Z:Z: 

y = 8  

y = 10 

y = 12 

In Q 4 we will compute exactly the free energy for N = 1, 2, 3, 4 up to y = 14, using 
the above polynomials; extrapolation of the results will then yield, up to y = 14, an 
approximated value for f, in the thermodynamic limit in good agreement with the 
result of a Monte Carlo simulation of the system and a theoretical ansatz. 

zf + z :  +36ztz: + 1 6 ~ : ~ :  + 1 6 ~ : ~ :  

z:'+z:' +25z;z: +25z:z: +1ooz:z; 

z:' + z i 2  +36z:'z: +36z:z:' +225zfz;  +225zIz: +400z:z;. 

3. Upper and lower bounds to the free energy 

In order to situate and compare our analytical results for small N and our extrapolation 
(see $04 and 5 ) ,  with the results of a Monte Carlo simulation of the system with 
N = 37 particles (Calinon and Choquard 1979, see also Choquard et a f  1980b), we 
use the exact results for y = 2 and derive some refined bounds on the free energy 
which improve those previously given (Sari and Merlini 1976). The bounds are 
obtained by means of the Jensen inequality and the H-stability bound for the energy. 
With 

f, =-(1 /N) lnQ,(N)+By +(1 /p) ( l - Inp)  

E, = (1 /N)Wy + B  
and 

the Jensen inequality yields 

so that 

7, 7 2  + (Y -2)Ez. 

Since T2 = 0.8310592 and E2 = 0.230696 a rigorous upper bound is given by 

7, c 0.83 1 059 2 + (y  - 2)0.230 696. (21) 
A lower bound is obtained in the same way by using the H-stability bound: 

Since H 3 -N(B - E ) ,  then 

1 
N! 

0, s - I d{x} e-2H exp[(y - 2)(B - F ) N ]  
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and thus ry ”fz+(y-2)&. 

Notice that - N ( B  - E )  is the minimum value of the energy for N > 1. e has been 
found to satisfy 0.000 62 s E < 0.017 for for the perfect triangular lattice configuration 
(Sari et a1 1976, Alastuey and Jancovici 1981). A configuration with lower energy 
has not yet been found. Thus 

(23) f, 3 0.831 059 2 + (7 - 2)O.OOO 62 

where for E we have taken the value E = 0.000 62. 

4. Exact computation of the free energy density for small N and extrapolation 

We now compute exactly the free energy density for very small N, i.e. N = 1, 2, 3, 4 
and up to moderately high values of the plasma parameter y = ( l /kT)eZ s 14. As 
noted in 9: 2, we assume that for the computation of 7, in (3) the upper limit of 
integration for the 2, can be extended from N to CO. This was justified for y = 2 
(Alastuey and Jancovici 1981) and is expected to hold for y > 2, in view of the presence 
of Gaussian terms proportional to y in the integral; this was checked explicitly for 
N = 1 and N = 2. Nevertheless, in doing so we have no proof that fy calculated with 
(3) is more than a rigorous lower bound to the exact free energy for y # 2. 

4.1. Computation for small N 

The computation for N = 1 is immediate and we get 
1 1 f y = l n z y + l  f, = In zy. 

The exact computation of the free energy for N = 1, where the upper limit of integration 
is N = 1, gives 

fy = In :y + 1 - ln(1 -e-”’) f, = In i y  - ln(1 -e-”’). 

For y > 6, e-’/’ < 0.06 and the two results are in good agreement. 

tion: y1 = (y/4)1/2(z1 + z 2 ) ,  y2 = (y/4)’/’(z1 - z 2 ) ,  which gives 
The computation for N = 2 is easily obtained by means of the variable transforma- 

(26) 

As before, it can be checked explicitly that the error due to the extension of the upper 
limit of integration from N = 2 to CO is small for every y as in the case N = 1. 

For N = 3 the computation is not as easy as for N = 2 (see Mehta 1967, appendix 
A for a similar computation in the one-dimensional case). Nevertheless, following 
Mehta and using a variable transformation, the computation can be carried out as 
follows. Introduce 

- -  
fy=f,-+(2-1n2). 
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We then obtain 

With the change of variables y: =Z:, 3y: =Z:, we see that the computation can 
be carried out with the help of the values of a ({zi}) for N = 2 given in 3: 2. The results 
for N = 1, 2, 3 and up to y = 14 are given in table 1 below. 

Table 1. 

N = l  2 
4 
6 
8 

10 
12 
14 

N = 2  2 
4 
6 
8 

10 
12 
14 

N = 3  2 
4 
6 
8 

10 
12 
14 

0 
0.693 15 
1.098 61 
1.386 4 
1.609 44 
1.791 76 
1.945 91 

0.289 72 
0.926 01 
1.333 51 
1.649 29 
1.915 30 
2.150 00 
2.363 17 

0.418 22 
1.017 987 
1.404 56 
1.698 90 
1.939 94 
2.146 04 
2.327 57 

1 
1.693 15 
2.098 61 
2.386 4 
2.609 44 
2.791 76 
2.945 91 

0.943 14 
1.579 44 
1.986 94 
2.302 72 
2.568 72 
2.803 42 
3.016 60 

0.916 86 
1.51662 
1.903 20 
2.197 54 
2.438 58 
2.644 68 
2.826 21 

4.2. Extrapolation method 

We first show that the knowledge of the free energy for small N, N S 5 at y = 2 is 
very useful to obtain an extrapolated result for the free energy density, which is a 
very good approximation to the exact free energy in the thermodynamic limit given 
by (6). 

For y = 2 the computation of the sequence f y ,  fy up to N = 5 is easy and we 
obtain the sequence given in table 2. 

Now, the method of extrapolation for f y ,  fy to large N, which we will adopt 
later for y 2 2 ,  is suggested by the exact asymptotic behaviour of the Vandermonde 
determinant considered in 3: 2. In fact from ( 5 ) ,  we have 

- 
fy=2=2[~NlnN-~(N-1)]+1-(1 /N) ln  
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Table 2. 

- 
N f: - 2  f : = 2  

1 0 1 
2 0.289 725 0.931 5 
3 0.418 214 0.916 86 
4 0.493 153 0.901 37 
5 0.542 946 0.891 00 

Introducing the variable x = 1/N, and using the formula K !  = 
(27)’” exp[(K +;) In K - K  + 1/12K - 1/300K3] for every K and remembering that 
by definition the Euler constant c = 0.577216 is given by 

it can be shown that the asymptotic limit is approached as 
1 1 1 1 2  fy=2(x)  = f Y = 2 ( 0 ) + i 5 x  In x +x(g In 2 7  - z ( c  + I ) ) + ~ x  +. . . 

j = - - = 2 ( x ) = f y = 2 ( 0 ) + z x  1nx-T.x 1n27-Ex + . . . .  1 1 1 2  

Our analysis for y = 2 suggests to extrapolate the values of f y  and fy to large N 
and arbitrary y by the ansatz 

(28) 

where a, 6, c depend on y (we believe that (28) above is not restricted to the particular 
value y = 2). For y = 2, using the results for N = 1, 2, 3 and putting c = 0, the above 
expression yields the asymptotic values f y = 2 ( 0 )  = 0.833 28 and f y = 2 ( 0 )  = 0.810 128; 
using in the same way the results for N = 2, 3, 4 we obtain fy=2(0)  = 0.831 99 and 
fy ;=2(0)  = 0.822 51. On the other hand, using the results for N = 3, 4, 5 we obtain 
the values fye2(O)  = 0.831 and f y C 2 ( 0 )  = 0.825, which are in excellent agreement 
(up to 5 x with the exact value in the thermodynamic limit f y Z 2  = 0.831 059 4 
given by (6 ) .  

Using the above method of extrapolation, we have first computed the free energy 
up to y = 10 using the results for N = 1, 2, 3. The values are given in table 3. 

f y ( x ) = f y ( 0 ) + a x  + b x  Inx +a2+.  . . 

Table 3. Free energy for y = 2, 4, 6, 8, 10 

~~ ~ 

2 0.833 273 0.810 177 
4 1.262 485 1.285 583 
6 1.486 23 1.538 906 
8 1.637 015 1.660 11 

10 1 662 073 1.685 17 

In analogy with the results obtained in a refined truncation scheme of the BBGKY 

hierarchy (Calinon er a1 1979) and in a recent Monte Carlo simulation of the system 
(Calinon and Choquard 1979, see also Choquard eta1 1980b), we consider an analytical 
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0 6 -  

ansatz for the free energy density given by 

$\ 
\ 

From (29) the correlation energy and the excess specific heat take the simple form 

E, = a  - b ln[-y/(y +c)]  (30) 

c, = bc[y/(v +c)l .  (31) 

To find the values of a ,  b, c, in (29) we use the exact results for fy=2, Ey=2 and we 
assume that a is the lowest value of the energy at T = 0, i.e. that of the perfect 
triangular crystalline configuration given in 3: 2, i.e. a = 2-0.374 38 = 0.000 62. 

For this purpose we may put a = 0; we then get c = 3.3 and b = 0.236 715 5 .  Our 
results are presented in figure 1 where we plot the free energy f,/y given by the 
analytical ansatz (29), the average i(7, +T,) given by our method of extrapolation 
and the theoretical rigorous upper and lower bounds given by (21) and (23). The 
concave function of y given by (29) appears as a correct attractor to the results of 
our extrapolation method. It is expected that a computer computation of f, up to 
y = 200 and up to N = 6 will yield the thermodynamic free energy exact up to 
and more conclusions will be obtained about the thermodynamics of the two- 
dimensional OCP (Johannesen and Merlini 1982). To conclude, we present the method 
of computation for N > 3 and check the usefulness of the approach using the more 
realistic results for N = 2, 3,  4 particles. 

U -  c P 0 4 :  ' 
0 2 1  

- .  - .  

C 

, 
14 10 12 0 2 i, 6 8 

'd 

Figure 1. The free energy density as function of y following the ansatz given by (29) 
(curve a), the rigorous upper and lower bounds (b and c) from (23) and (21); the full 
circles are the results with N = 1 ,  2, 3 from table 3 and the crosses are our results with 
N = 2, 3, 4 from ta_ble 5 .  Curve d is the ansatz (29) with a, b, c determined with the 
values of f = C f ,  +fy)/2y at y = 14, y = 10 and y = 6. The open circles are the results 
of computer experiments (Calinon and Choquard 1979, see also Choquard 1980b). 

4.3. Method of computation for N > 3 

The variable transformation given by (27) may in principle be generalised to the case 
N > 3. This is of interest for further numerical computations, since the number of 
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variables may be reduced. Let us now consider the case N = 4. Then instead of (27) 
we have 

Y i  =(7’/4)1’2(2~-22) Y2=(y/12)1’2(21+Z2-223) 
(32) 

Nevertheless, we found it to be more convenient to consider the similar transformation 
given by 

y3=(y/24)”2(21+22+23-324) y4 = (y/8)1/2(21+z2+23+24). 

y 1 =  (Y/8)1’2(21-22-23+Z4) y 2 =  (Y/8)1’2(2i--2+23-24) 
(33) 

From above ~y X i S 1  z i  = X i = 1  y i .  The determinant of the transformation is given by 
layi/azjl = (y/414; moreover 

21-Z2=(2/Y)1/2(Yl+Y2) 2i-z3=(2/Y)1/2(yi +y3) 

y 3 =  (y/8)1’2(21+22-23-24) y4=(y/8)1’2(21 +22+23+i?4). 
1 4 2 4 2  

2 1  - 2 4  = (2/y)’/2(y2fy3) 2 2 - 2 3  = (2/7’)1’2(y3 -y2) (34) 

2 2 - 2 4  = (2/Y)1’2(Y3 - Y i )  2 3  - 2 4  = (2/? )1/2(y2 - y 1). 

Thus from (3) the free energy is given by 

f ,  = y (In 4 - f )  + 1 
1 j;n?=,dyf exp(-X?=, y : ) ln?= ,dq i  n ? , i l y 4 + y ~ - 2 y i y j c o s ( q i - q j ) l  2 ‘ I 2  

-4 In( eT134! (y/2)4(y/2)37 > .  
(35) 

We now carry out explicitly the computation for y = 4. Integration over the angles gives 

1 5 0 3  3 

0 r = l  1 = 1  

f , = 4 = 4 ( l n 4 - d + l - i I n /  9 1 n dyf exp(-x  yf)- 

x (36a 2b2c + 4ac2b + 4a3b3 + 4abc4 + a 2b4 + perm). 

where a = y;, b = yi, c = y: and perm means a permutation of a, b, c. We then obtain 

f Y z 4 = 8  ln2-~+1-~ln[ (24)31106(4!216)- ’ ]=  1.476613 0 

and rYZ4 = 1.068 393 8. In the same way, using the binomial formula in ( 3 3 ,  
integrating over the angles and the moduli we obtain the free energy for N = 4 up to 
y = 14 and the results are given in table 4. 

Table 4. 

2 0.493 142 9 0.901 362 0 
4 1.068 393 8 1.476 612 9 
6 1.442 088 1 1.850 307 1 
8 1.726 747 9 2.134 967 0 

10 1.958 902 1 2.367 121 2 
12 2.155 684 8 2.563 903 9 
14 2.326 839 2.735 058 8 
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Using (28) with c = O  as well as the results of tables 4 and 1 we obtain our 
extrapolated results as given in table 5 .  

Table 5. 

Y 

2 
4 
6 
8 

10 
12 
14 

0.822 51 
1.262 93 
1.574 24 
1.840 13 
2.080 75 
2.298 225 
2.419432 

f y ;cO,  

0.831 99 
1.272 54 
1.583 884 
1.849 765 
2.090 388 
2.307 86 
2.501 09 

equation (29) 

0.826 27 
1.255 03 
1.579 062 
1.849 042 4 
2.085 569 
2.299 237 2 
2.496 260 2 

The above estimates obtain with N = 2 , 3 , 4  are much better than the ones obtained 
before with N = 1, 2, 3.  In fact, the method of extrapolation with c = 0 in (28) fails 
to work for y > 10 and N = 1,  2, 3, due to the fact that x = 1/N is not small enough 
at N = 1;  this is not the case for the extrapolation with N = 2, 3, 4 particles and the 
computation confirms that the method yields fast convergent asymptotic limits for the 
free energy. 

At a heuristic level, it is also of interest to consider an ansatz given by (29) which 
may give an approximate description of the thermodynamics of the system for not 
too large values of y. We determine the parameters in (29) in requiring that (29) give 
the exact values for the free energy f ,  = (f7 +7,)/2y at y = 14, y = 10 and y = 6. 
We then found c =4.315 615, b = 0.186 781 3 and a =0.044 888 in (29). The ansatz 
(see table 5 )  turns out to give an accurate description of the extrapolated results 
obtained with N = 2, 3, 4 up to y = 14 which agrees reasonably with that of a Monte 
Carlo simulation of the system with N = 36 in which a,  6, c are slightly different, i.e. 
a = 0.017, b = 0.225 and c = 3.75. Our results are preliminary, and are presented in 
figure 1,  together with those of a Monte Carlo simulation of the system (Calinon and 
Choquard 1979, see also Choquard et a1 1980b); a systematic computer computation 
of multiple integrals is in progress for N up to 6 and we believe that the approach 
will yield very accurate results for the free energy and correlation energy up to y = 200. 

5. The virial pressure 

For the model defined on a circular domain the one-body correlation function is 
rotationally invariant and it can be easily shown that the virial pressure is equal to 
the normalised density at the wall (Choquard et a1 1980a, Calinon and Merlini 1982). 
Thus 

where fl(x) is the one-body correlation function given by (7 ) .  At the present time 
we have not found any method of extrapolation for p v  analogous to that given by (28) 
for the free energy; this appears difficult since even at y = 2 the explicit N-dependence 
in (1 1) is very complicated. To obtain an estimate for p v  in the thermodynamic limit 
we use here a linear extrapolation of the exact results for N = 1 and N = 2, by means 
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of the small polynomials given in 3: 2 for y in the range 2 < y s 14. As remarked in 
3: 2, the upper limit of integration in (11)  cannot be taken equal to infinity as for the 
free energy, otherwise one would obtain the thermal pressure as we have shown 
explicitly for y = 2 (equation (13)). 

Let us first consider the case y = 2, i.e. 
N-1 (Y) = I  

, = 2  ~ = ~ I : e x p ( - z ~ ) ~ ' ~  d z 2 '  

The computation up to N = 10 is easily done and the results are given in table 6. 
With x = 1/N, let p,, be the value determined by ( p , , , ~ , , + ~ )  at x =0, n = 1, 2 , .  . . , 10 
(linear extrapolation). We then obtain the sequence p6 = 0.672 164, p7 = 0.673 658, 
ps=0.674 869, p9=0.675 879. Defining in the same way pn = K), we obtain 
plS = 0.681 709, p16 = 0.682 622, p7 = 0.683 346, p18 = 0.684. The last value may 
be compared with the exact value (Choquard 1980) 

lim (pp,/p),=2(N) =In 2 = 0.693 15 
N-m 

in the thermodynamic limit, and the error is 9 x 

Table 6. Wall density at y = 2 for N = 1 ,  2 , .  . . , 10 

N P N  = L W ( N ) l p  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.581 976 6 
0.612 196 4 
0.627 313 9 
0.636 469 9 
0.642 713 3 
0.647 303 6 
0.650 855 1 
0.653 705 5 
0.656 057 0 
0.658 039 2 

For y 2 2 a linear extrapolation of the results for N = 1 and N = 2 up to y = 12 
yields an estimate of @ p v / p ) ,  in the thermodynamic limit as given below. The values 
of table 7,  equation (12) and the results of a Monte Carlo simulation with N = 37 
particles are plotted in figure 2. As can be seen the agreement is satisfactory. To 

Table 7. The viral pressure up to y = 12. 

~ ~ ~~ 

Y ( P P J P  1 Monte Carlo 

0 1 1 
2 0.642 492 8 0.647 2 
4 0.426 622 4 0.423 5 
6 0.282 297 6 0.269 9 
8 0.182 545 2 0.168 1 

10 0.079 635 8 0.077 8 
12 0.070 120 4 - 
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Figure 2. The kinetic pressure from a Monte Carlo computation with N = 3 7  particles 
(Calinon and Choquard 1979, see also Choquard e t  a1 1980b), curve a with open circles; 
the full circles are our results of table 7,  and the thermal pressure (12). 

conclude this section, it should be remarked that, as for the computation of the free 
energy density, the thermodynamic limit may not be said to be completely reached, 
so that a possible non-analytic behaviour at large values of y may not be discovered 
within a Monte Carlo simulation with N = 37 or within the present treatment with 
N = 1 and N = 2. The results of both treatments indicate that the pressure is a positive 
monotonically decreasing function of y up to y = 12. 

6. Conclusions 

In this work we have presented an analytical approach and a method of extrapolation 
to compute the thermodynamics of the two-dimensional one-component plasma. 
Preliminary results up to moderately high values of the coupling parameter y - 14 
have been obtained for the free energy and the kinetic pressure of the system. They 
agree reasonably well with that of the first Monte Carlo computer experiment on the 
system which was carried out with N = 37 particles (Calinon and Choquard 1979, see 
also Choquard et a1 1980b). In addition recently new refined and Monte Carlo 
computer experiments with more particles (Caillol et a1 1982), as well as molecular 
dynamics computations (De Leeuw and Perram 1982), indicate that the two- 
dimensional system (as in three dimensions) has the interesting property of undergoing 
a first-order phase transition at high values of the plasma parameter y situated in the 
range y - 135-140. The question if the transition which takes place in the system is 
connected with a symmetry breakdown of the translation group (appearance of periodic 
states with long-range positional order), or if it concerns the appearance of long-range 
directional order only, is still open. In connection with the above situation, it is 
interesting to note that the free energy is independent of boundary condition 
(Albeverio et a1 1982). It thus follows that to investigate a possible non-analytic 
behaviour of the free energy as a function of y, it is sufficient to consider the model 
on a circular domain with open boundary condition as has been considered in this 
work. Moreover, it has been shown that long-range positional order (appearance of 
a crystalline phase) with periodic electron density in the thermodynamic limit cannot 
occur in the system, except possibly if the pair correlation function g ( r )  decays more 
slowly than l / r 2  for r + cc (Martinelli and Merlini 1982); at the present time a study 
of the behaviour of g(r) to show a slower decay then l / r 2  at high values of y has not 
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been considered in the Monte Carlo or molecular-dynamic treatments and this appears 
difficult; we expect that further computations along the lines developed in this note 
should give an accurate description of the thermodynamic free energy and internal 
energy exact up to so that a possible non-analytic behaviour could be detected, 
as a manifestation of a phase transition (Johannesen and Merlini 1982). 
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